R: barplots showing the relative strengths of correlation
What do you wanna do?:
Print the correlation coefficients
https://gyazo.com/5ad8b1d3a615155ffe5cb7d632155524
R packages used:
First you define the list of variable names (full name) and index categories. The variable name defined here is going to be used in the plot. The index category is used to differentiate the color.
code::R
`{r}
varnames <- rbind("McD CD", "USF CD", "Verb—Nsubject DeltaP Dep", "Verb—Dobj (MI)", "Verb—Advmod Delta P Strongest", "Noun—Amod (MI)", "Adjective Frequency (Logged)", "Adverb Frequency (Logged)", "Main verb Frequency (Logged)", "Content word lemma Frequency", "Lemma bigram DeltaP Strongest")
IndexCategory <- rbind("Contextual distinctiveness", "Contextual distinctiveness", "Dependency bigram", "Dependency bigram", "Dependency bigram", "Dependency bigram", "Word Frequency", "Word Frequency", "Word Frequency", "Word Frequency", "Bigram")
`
Next, run correlation analysis and store the result into a new matrix using #psych code::R
`{r}
correlation <- corr.test(y = a2$Score, x = a2,2:12, method = "pearson") #y = dependent variable, x = independent variables cor_result <- cbind(varnames, IndexCategory, print(correlation, short = F, digit = 3)) #combining the varname, index category and the result of correlation cor_result$cor_abs <- abs(cor_result$raw.r) #adding the absolute strengths of correlation -> will be used to sort the variable according to the strengths. `
code::R
`{r correlation plots}
ggplot(cor_result, aes(x = reorder(varnames, cor_abs), y = raw.r, fill = IndexCategory, shape = IndexCategory), ymax = .5, ymin = -.5)+ #reorder() will sort the order of variable, y = point estimate of correlation geom_bar(stat = "identity", width = .7) + #this will plot the bar geom_pointrange(aes(x = reorder(varnames, cor_abs), y = raw.r, ymin = raw.lower, ymax = raw.upper, width = .15)) + #point range plots the CI of the correlations ylim(-1, 1) + #set the possible range of correlation (-1 – 1) geom_text(aes(y = -.79, label = raw.r, size = 1.7), hjust = "outward", family = "serif") + #print the point estimate of corrletation coeffients coord_flip() + #make the plot horizontal theme_bw()+ #change the background color labs(x = "Lexical and phraseological indices", y = "Pearson Correlation Coefficients") +
theme(legend.position="bottom") + #naming the axes scale_size(guide = 'none')
`